BPS crystals

Quiver Yangians

Representations

Summary 0000000

BPS algebras & representations from colored crystals

Wei Li

Institute of Theoretical Physics, Chinese Academy of Sciences

Strings, Fields and Holograms Monte Verità, Ascona, Oct 11-15 2021

Quiver Yangians

Representations

Summary 0000000

Reference

- Quiver Yangian from crystal melting
 [2003.08909] with Masahito Yamazaki
- Shifted quiver Yangians and representations from BPS crystals [2106.01230] with *Dmitrii Galakhov and Masahito Yamazaki*
- Toroidal and elliptic quiver BPS algebras and beyond [2108.10286] with *Dmitrii Galakhov and Masahito Yamazaki*

Main question

What is the algebraic structure underlying the BPS sector of a 4D $\mathcal{N}=2$ gauge theory?

multiplication: $\mathcal{H}_{BPS} \otimes \mathcal{H}_{BPS} \rightarrow \mathcal{H}_{BPS}$

- Analogue of chiral algebra of 2D $\mathcal{N} = 2$ SCFT
- Robust
- Control many aspects of theory (BPS counting, wall crossing, etc)

ro	BPS crystals	Quiver Yangians	Representations	Summary
0000	0000000	00000000000	0000000000	0000000

History

• Fusion of two BPS states in 4D $\mathcal{N} = 2$ gauge theory

Harvey-Moore '96

multiplication: $\mathcal{H}_{BPS} \otimes \mathcal{H}_{BPS} \to \mathcal{H}_{BPS}$

• Cohomological Hall Algebra (CoHA)

Kontsevich-Soibelman '10

• Include decaying process

Int

• Drinfeld double of CoHA \longrightarrow affine Yangian algebra Davison '13

• Known only for a few cases.

- $\bullet\,$ Type IIA string in generic toric Calabi-Yau threefold X
- BPS states: D6/D4/D2/D0 branes wrapping holomorphic 6/4/2/0 cycles of X
- Question 1:

What is the BPS algebra underlying this BPS sector?

• Question 2:

What can we use BPS algebra for?

BPS crystals

Quiver Yangians

Representations

Summary 0000000

BPS quiver Yangians from colored crystals

9 BPS sector:
$$\mathcal{N} = 4$$
 quiver QM (Q, W)

 \downarrow define

2 { BPS states } = { colored crystals }

act $\uparrow \Downarrow$ bootstrap

• BPS algebra = quiver Yangian Y(Q, W)

Advantages

- Explicit algebraic relations
- Apply to ALL toric Calabi-Yau threefolds

Can be generalized to trigonometric and elliptic version

Quiver Yangians

Representations

Summary 0000000

Representations

General representation of same quiver Yangian

- Given by subcrystals
- O Different framing of the same quiver
- Oescribe other chambers, open BPS counting, and many more.

BPS crystals

Quiver Yangians

Outline

Representations

Summary 0000000

- 3 Quiver Yangians
- 4 Representations

5 Summary

BPS crystals

Quiver Yangians

Representations

Summary 0000000

Setup

Type IIA string compactified on a toric Calabi-Yau threefolds \boldsymbol{X}

• $X = \mathbb{T}^2 \times \mathbb{R}$ fibered overe \mathbb{R}^3

• 4D $\mathcal{N}=2$ gauge theory

• $\frac{1}{2}$ -BPS sector: D6/D4/D2/D0 branes wrapping holomorphic 6/4/2/0 cycles of X

 $\#(D6, D4, D2, D0) = (1, n_4^i, n_2^j, n_0)$

What is the BPS algebra underlying this BPS sector? \longrightarrow How to describe these BPS states?

Quiver Yangians

Representations

Summary 0000000

Low energy effective theory on D-brane bound state

 $\mathcal{N} = 4$ quiver quantum mechanics (Q, W)

٥

BPS crystals

Quiver Yangians

Representations

Summary 0000000

BPS crystal

Szendröi '07, Ooguri-Yamazaki '08

3D crystal description

a D-brane bound state w/ $\#(D6, D4, D2, D0) = (1, 0, n_2^j, n_0)$

- $\iff \qquad {\rm a} \ U(1)^2 \text{-invariant state of quiver QM} \ (Q,W)$
- \iff a 3D colored crystal configuration
- Crystal generating function reproduces BPS partition function

$$Z_{\rm crystal} = Z_{\rm BPS}$$

periodic quiver
$$\stackrel{\text{uplift}}{\underset{\text{projection}}{\longleftarrow}}$$
 full 3D crystal

BPS crystals

Quiver Yangians

Representations

Summary 0000000

From periodic quiver to BPS crystal

Intro	
000000	

Quiver Yangians

Representations

Summary 0000000

Origin of crystal

choose origin o

In	tı	0			
0	0	0	0	0	0

Quiver Yangians

Representations

Summary 0000000

path \Rightarrow atom

choose origin o

2 path from $\mathfrak{o} \Rightarrow$ atom a

In	tı	0			
0	0	0	0	0	0

Quiver Yangians

Representations

Summary 0000000

path \Rightarrow atom

choose origin o

2 path from $\mathfrak{o} \Rightarrow$ atom a

In	tı	0			
0	0	0	0	0	0

Quiver Yangians

Representations

Summary 0000000

path \Rightarrow atom

choose origin o

2 path from $\mathfrak{o} \Rightarrow$ atom a

BPS crystals

Quiver Yangians

Representations

Summary 0000000

Path equivalence

choose origin o

- 2 path from $\mathfrak{o} \Rightarrow \operatorname{atom} a$
- equivalence of paths

BPS crystals

Quiver Yangians

Representations

Summary 0000000

Melting rule

- choose origin o
- 2 path from $\mathfrak{o} \Rightarrow \mathsf{atom} \ a$
- equivalence of paths
- 4 Melting rule: if $a \notin K$, then $I \cdot a \notin K$

BPS crystals

Quiver Yangians

Representations

Summary 0000000

Melting rule

- choose origin o
- 2 path from $\mathfrak{o} \Rightarrow \operatorname{atom} a$
- equivalence of paths
- **Melting rule**: if $a \notin K$, then $I \cdot a \notin K$

not allowed

BPS crystals

Quiver Yangians

Representations

Summary 0000000

Melting rule

- choose origin o
- 2 path from $\mathfrak{o} \Rightarrow \operatorname{atom} a$
- equivalence of paths
- **Melting rule**: if $a \notin K$, then $I \cdot a \notin K$

allowed

BPS crystals

Quiver Yangians

Representations

Summary 0000000

Depth of an atom

- choose origin o
- 2 path from $\mathfrak{o} \Rightarrow$ atom a
- equivalence of paths
- 4 Melting rule: if $a \notin K$, then $I \cdot a \notin K$
- 6 depth = number of closed loop in the path

 $\mathrm{depth}=1$

conifold

Quiver Yangians

Representations

Summary 0000000

Equivariant weight of arrows and atoms

- choose origin o
- 2 path from $\mathfrak{o} \Rightarrow$ atom a
- equivalence of paths
- 4 Melting rule: if $a \notin K$, then $I \cdot a \notin K$
- 6 depth = number of closed loop in the path

To derive BPS algebra from crystal, assign equivariant weights to atoms

L-Yamazaki '20

- **1** h_I : equivariant weight of arrow I
- 2 h(a): equivariant weight of atom a

To derive BPS algebra from crystal, assign equivariant weights to atoms

L-Yamazaki '20

- **1** h_I : equivariant weight of arrow I
- 2 h(a): equivariant weight of atom a

BPS crystals

Quiver Yangians

Representations

Summary 0000000

Number of equivariant parameters

• number of
$$h_I = |Q_1| (= |Q_0| + |Q_2|)$$

 $(Q_0, Q_1, Q_2) = (\text{vertices}, \text{edges}, \text{faces})$

• Loop constraints (global symmetry)

$$\sum_{I \in L} h_I = 0$$

• Vertex constraints (gauge symmetry)

$$\sum_{I \in a} \operatorname{sign}_a(I) h_I = 0$$

After loop and vertex constraints, the number of parameters = 2

L-Yamazaki '20

BPS crystals

Quiver Yangians

Representations

Summary 0000000

Full crystal v.s. molten crystal (\mathbb{C}^3)

Vacuum

1-atom excited state

4-atom excited state

BPS crystals

Quiver Yangians

Representations

Summary 0000000

Full crystal v.s. molten crystal (resolved conifold)

BPS crystals

Quiver Yangians

Outline

Representations

Summary 0000000

- 2 BPS crystals
- 3 Quiver Yangians
- 4 Representations

5 Summary

BPS crystals

Quiver Yangians

Representations

Summary 0000000

Affine Yangian of \mathfrak{gl}_1

Associative algebra with generators e_j, f_j and ψ_j with $j \in \mathbb{Z}_0$

• Generators

$$\psi(z) = 1 + (h_1 h_2 h_3) \sum_{j=0}^{\infty} \frac{\psi_j}{z^{j+1}} \qquad e(z) = \sum_{j=0}^{\infty} \frac{e_j}{z^{j+1}} \qquad f(z) = \sum_{j=0}^{\infty} \frac{f_j}{z^{j+1}}$$

• One S_3 invariant function $(h_1 + h_2 + h_3 = 0)$

$$\varphi_3(z) \equiv \frac{(z+h_1)(z+h_2)(z+h_3)}{(z-h_1)(z-h_2)(z-h_3)}$$

• Defining relations

$$\begin{split} [\psi(z),\psi(w)] &\sim 0 & [e(z),f(w)] \sim -\frac{1}{\sigma_3} \frac{\psi(z) - \psi(w)}{z - w} \\ \psi(z)\,e(w) &\sim \varphi_3(z - w)\,e(w)\,\psi(z) & \psi(z)\,f(w) \sim \varphi_3^{-1}(z - w)\,f(w)\,\psi(z) \\ e(z)\,e(w) &\sim \varphi_3(z - w)\,e(w)\,e(z) & f(z)\,f(w) \sim \varphi_3^{-1}(z - w)\,f(w)\,f(z) \end{split}$$

• Serre relations

$$\operatorname{Sym}_{(z_1, z_2, z_3)}(z_2 - z_3) e(z_1) e(z_2) e(z_3) \sim \operatorname{Sym}_{(z_1, z_2, z_3)}(z_2 - z_3) f(z_1) f(z_2) f(z_3) \sim 0$$

BPS crystals

Quiver Yangians

Representations

Summary 0000000

BPS crystal for \mathbb{C}^3 : plane partitions

$$\sum_{n=0}^{\infty} M(n)q^n = \prod_{k=1}^{\infty} \frac{1}{(1-q^k)^k} = 1 + q + 3q^2 + 6q^3 + 13q^4 + 24q^5 + 48q^6 + \cdots$$

Intro 000000

Quiver Yangians

Representations

Summary 0000000

Action of $\hat{\mathcal{Y}}(\mathfrak{gl}_1)$ on a plane partition

$$\begin{cases} \psi(z)|\Lambda\rangle = \Psi_{\Lambda}(z)|\Lambda\rangle, \qquad \Psi_{\Lambda}(z) \equiv \left(1 + \frac{\psi_{0}\sigma_{3}}{z}\right) \prod_{\square \in (\Lambda)} \varphi_{3}(z - h(\square)) \\ e(z)|\Lambda\rangle = \sum_{\square \in \text{Add}(\Lambda)} \frac{\sqrt{-\frac{1}{\sigma_{3}}\text{Res}_{w=h(\square)}\Psi_{\Lambda}(w)}}{z - h(\square)} |\Lambda + \square\rangle \\ f(z)|\Lambda\rangle = \sum_{\square \in \text{Rem}(\Lambda)} \frac{\sqrt{+\frac{1}{\sigma_{3}}\text{Res}_{w=h(\square)}\Psi_{\Lambda}(w)}}{z - h(\square)} |\Lambda - \square\rangle \end{cases}$$

- Applying e(z) on $|\emptyset\rangle$ repeatedly generates all $|\Lambda\rangle$ automatically Applying f(z) on $\forall |\Lambda\rangle$ repeatedly brings it to $|\emptyset\rangle$.
- All poles of $\Psi_{\Lambda}(z)$ have a meaning: either Add(Λ) or Rem(Λ) $\implies \Psi_{\Lambda}(z)$ only has poles near surface of $|\Lambda\rangle$.
- "Melting Rule" automatically satisfied !

1 bonding factor $\varphi_3(z) \equiv \frac{(z+h_1)(z+h_2)(z+h_3)}{(z-h_1)(z-h_2)(z-h_3)}$

2 need loop constraint $h_1 + h_2 + h_3 = 0$

BPS crystals

Quiver Yangians

Representations

Summary 0000000

From affine Yangian of \mathfrak{gl}_1 to general quiver Yangian

Generators

$$(e(z), \psi(z), f(z)) \implies (e^{(a)}(z), \psi^{(a)}(z), f^{(a)}(z))$$
 for each $a \in Q_0$

Algebraic relations?

Fix action of quiver Yangian on set of colored crystals first.

Action of quiver Yangian on colored crystal L-Yamazaki '20

$$\begin{cases} \psi^{(a)}(z)|\mathbf{K}\rangle = \Psi_{\mathbf{K}}^{(a)}(z)|\mathbf{K}\rangle , \quad \Psi_{\mathbf{K}}^{(a)}(u) \equiv (\frac{1}{z})^{\delta_{a,1}} \prod_{b \in Q_0} \prod_{b \in \mathbf{K}} \varphi^{a \leftarrow b}(u - h(\mathbb{B})) \\ e^{(a)}(z)|\mathbf{K}\rangle = \sum_{[\overline{a}] \in \operatorname{Add}(\mathbf{K})} \frac{\pm \sqrt{\operatorname{Res}_{u=h(\overline{a})}\Psi_{\mathbf{K}}^{(a)}(u)}}{z - h(\overline{a})} |\mathbf{K} + \overline{a}\rangle , \\ f^{(a)}(z)|\mathbf{K}\rangle = \sum_{[\overline{a}] \in \operatorname{Rem}(\mathbf{K})} \frac{\pm \sqrt{(-1)^{|a|}\operatorname{Res}_{u=h(\overline{a})}\Psi_{\mathbf{K}}^{(a)}(u)}}{z - h(\overline{a})} |\mathbf{K} - \overline{a}\rangle , \end{cases}$$

• Applying $e^{(a)}(z)$ on $|\emptyset\rangle$ repeatedly generates all $|K\rangle$ Applying $f^{(a)}(z)$ on $\forall |K\rangle$ repeatedly brings it to $|\emptyset\rangle$.

 $I \in \text{loop } L$

- All poles of $\Psi_{K}^{(a)}(z)$ have meaning: either $\operatorname{Add}^{(a)}(K)$ or $\operatorname{Rem}^{(a)}(K)$ $\Longrightarrow \Psi_{K}^{(a)}(z)$ only has poles near surface of $|K\rangle$.
- "Melting Rule" automatically satisfied !

bonding factor
$$\varphi^{a \leftarrow b}(u) \equiv (-1)^{|b \rightarrow a|} \chi_{ab} \frac{\prod_{I \in \{a \rightarrow b\}} (u+h_I)}{\prod_{I \in \{b \rightarrow a\}} (u-h_I)}$$

loop constraint $\sum h_I = 0$

BPS crystals

Quiver Yangians

Representations

Summary 0000000

- After loop and vertex constraints $h_1 + h_2 + h_3 = 0$
- building blocks of $\Psi_{\rm K}^{(a)}(u)$

$$\varphi^{1 \leftarrow 1}(u) = \varphi^{2 \leftarrow 2}(u) = \frac{u+h_3}{u-h_3}$$
 and $\varphi^{1 \leftarrow 2}(u) = \varphi^{2 \leftarrow 1}(u) = \frac{(u+h_1)(u+h_2)}{(u-h_1)(u-h_2)}$

 i_3

2

BPS crystals

Quiver Yangians

Representations

Summary 0000000

 $(\mathbb{C}^2/\mathbb{Z}_2) \times \mathbb{C}$ crystal: 2-colored plane partitions

BPS crystals

Quiver Yangians

Representations

Summary 0000000

 $(\mathbb{C}^2/\mathbb{Z}_2) \times \mathbb{C}$ crystal

BPS crystals

Quiver Yangians

Representations

Summary 0000000

$(\mathbb{C}^2/\mathbb{Z}_2) imes \mathbb{C}$ crystal: vacuum

vacuum $|\emptyset\rangle$ Charge functions

$$\begin{cases} \Psi_{\rm K}^{(1)}(z) = \frac{1}{z} \\ \Psi_{\rm K}^{(2)}(z) = 1 \end{cases}$$

BPS crystals

Quiver Yangians

Representations

Summary 0000000

$(\mathbb{C}^2/\mathbb{Z}_2) \times \mathbb{C}$ crystal: vacuum \Longrightarrow level-1

vacuum
$$|\emptyset\rangle$$

Charge functions

$$\begin{cases}
\Psi_{\rm K}^{(1)}(z) = \frac{1}{z} \\
\Psi_{\rm K}^{(2)}(z) = 1
\end{cases}$$
Pole for $\square: z = 0 \implies e^{(1)}(z)|\emptyset\rangle = \frac{\#}{z}|\square\rangle$
Pole for $\square:$ none $\implies e^{(2)}(z)|\emptyset\rangle = 0$
 $f^{(1)}(z)|\emptyset\rangle = f^{(2)}(z)|\emptyset\rangle = 0$

BPS crystals

Quiver Yangians

Representations

Summary 0000000

$(\mathbb{C}^2/\mathbb{Z}_2) \times \mathbb{C}$ crystal: level-1

1-atom state $|\mathbb{I}\rangle \implies h(\mathbb{I}) = 0$ Charge functions

$$\begin{cases} \psi_{\rm K}^{(1)}(z) = \psi_0(z) \cdot \varphi^{1 \Rightarrow 1}(z - h(\underline{\mathbb{I}})) = \frac{1}{z} \cdot \frac{z + h_3}{z - h_3} \\ \psi_{\rm K}^{(2)}(z) = \varphi^{1 \Rightarrow 2}(z - h(\underline{\mathbb{I}})) = \frac{(z + h_1)(z + h_2)}{(z - h_1)(z - h_2)} \end{cases}$$

BPS crystals

Quiver Yangians

Representations

Summary 0000000

$(\mathbb{C}^2/\mathbb{Z}_2) \times \mathbb{C}$ crystal: level-1 \Longrightarrow level-2

1-atom state
$$|1\rangle \implies h(1) = 0$$

(1) Charge functions

$$\begin{cases} \psi_{\rm K}^{(1)}(z) = \psi_0(z) \cdot \varphi^{1 \Rightarrow 1}(z - h(\underline{\mathbb{I}})) = \frac{1}{z} \cdot \frac{z + h_3}{z - h_3} \\ \psi_{\rm K}^{(2)}(z) = \varphi^{1 \Rightarrow 2}(z - h(\underline{\mathbb{I}})) = \frac{(z + h_1)(z + h_2)}{(z - h_1)(z - h_2)} \end{cases}$$

2 Pole for
$$\square$$
: $z = 0$ and $z = h_3$
Pole for \square : $z = h_1$ and $z = h_2$

3
$$f^{(1)}(z)|\mathbb{I}
angle=|\emptyset
angle$$
 and $f^{(2)}(z)|\mathbb{I}
angle=0$

BPS crystals

Quiver Yangians

Representations

Summary 0000000

$(\mathbb{C}^2/\mathbb{Z}_2) \times \mathbb{C}$ crystal: level-2

2-atoms state $| 1_0 2_1 \rangle \implies h(1_0) = 0$, $h(2_1) = h_1$

Charge function

$$\begin{cases} \Psi_{\rm K}^{(1)}(z) = \psi_0(z) \cdot \varphi^{1 \Rightarrow 1}(z - h(\mathbb{I})) \cdot \varphi^{2 \Rightarrow 1}(z - h(\mathbb{I})) \\ = \frac{(1)}{4} \cdot \frac{(z + h_3)}{(z - h_3)} \cdot \frac{(z)(z + h_2 - h_1)}{(z - 2h_1)(z + h_3)} \\ \Psi_{\rm K}^{(2)}(z) = \varphi^{1 \Rightarrow 2}(z - h(\mathbb{I})) \cdot \varphi^{2 \Rightarrow 2}(z - h(\mathbb{I})) \\ = \frac{(z + h_1)(z + h_2)}{(z - h_1)(z - h_2)} \cdot \frac{(z + h_3 - h_1)}{(z + h_2)} \end{cases}$$

BPS crystals

Quiver Yangians

Representations

Summary 0000000

 $(\mathbb{C}^2/\mathbb{Z}_2) \times \mathbb{C}$ crystal: level-2 \Longrightarrow level-3

2-atoms state $|1_02_1\rangle \implies h(1_0) = 0, h(2_1) = h_1$

Charge function

$$\begin{cases} \Psi_{\rm K}^{(1)}(z) = \psi_0(z) \cdot \varphi^{1 \Rightarrow 1}(z - h(\mathbb{I})) \cdot \varphi^{2 \Rightarrow 1}(z - h(\mathbb{Z})) \\ = \frac{(1)}{4} \cdot \frac{(z + h_3)}{(z - h_3)} \cdot \frac{(z)(z + h_2 - h_1)}{(z - 2h_1)(z + h_3)} \\ \Psi_{\rm K}^{(2)}(z) = \varphi^{1 \Rightarrow 2}(z - h(\mathbb{I})) \cdot \varphi^{2 \Rightarrow 2}(z - h(\mathbb{I})) \\ = \frac{(z + h_1)(z + h_2)}{(z - h_1)(z - h_2)} \cdot \frac{(z + h_3 - h_1)}{(z + h_2)} \end{cases}$$

BPS crystals

Quiver Yangians

Representations

Summary 0000000

$(\mathbb{C}^2/\mathbb{Z}_2) \times \mathbb{C}$ crystal: Melting Rule

2-atoms state $| 1_0 | 2_1 \rangle \implies h(1_0) = 0$, $h(2_1) = h_1$

Charge function

$$\begin{cases} \Psi_{\rm K}^{(1)}(z) = \psi_0(z) \cdot \varphi^{1 \Rightarrow 1}(z - h(\underline{\mathbb{I}})) \cdot \varphi^{2 \Rightarrow 1}(z - h(\underline{\mathbb{I}})) \\ = \frac{(1)}{t} \cdot \frac{(z + h_3)}{(z - h_3)} \cdot \frac{(z)(z + h_2 - h_1)}{(z - 2h_1)(z + h_3)} \\ \Psi_{\rm K}^{(2)}(z) = \varphi^{1 \Rightarrow 2}(z - h(\underline{\mathbb{I}})) \cdot \varphi^{2 \Rightarrow 2}(z - h(\underline{\mathbb{I}})) \\ = \frac{(z + h_1)(z + h_2)}{(z - h_1)(z - h_2)} \cdot \frac{(z + h_3 - h_1)}{(z + h_2)} \end{cases}$$

BPS crystals

Quiver Yangians

Representations

Summary 0000000

$(\mathbb{C}^2/\mathbb{Z}_2) \times \mathbb{C}$ crystal: Melting Rule

3-atoms state $|1_02_12_2\rangle \implies h(1_0) = 0, h(2_1) = h_1 h(2_2) = h_2$ Charge function

$$\begin{cases} \Psi_{\rm K}^{(1)}(z) = \psi_0(z) \cdot \varphi^{1 \Rightarrow 1}(z - h(\underline{\mathbb{I}})) \cdot \varphi^{2 \Rightarrow 1}(z - h(\underline{\mathbb{I}}_1)) \cdot \varphi^{2 \Rightarrow 1}(z - h(\underline{\mathbb{I}}_2)) \\ = \frac{(1)}{4} \cdot \frac{(z + h_3)}{(z - h_3)} \cdot \frac{(z)(z + h_2 - h_1)}{(z - 2h_1)(z + h_3)} \cdot \frac{(z)(z + h_1 - h_2)}{(z - 2h_2)(z + h_3)} \\ \Psi_{\rm K}^{(2)}(z) = \varphi^{1 \Rightarrow 2}(z - h(\underline{\mathbb{I}})) \cdot \varphi^{2 \Rightarrow 2}(z - h(\underline{\mathbb{I}}_2)) \cdot \varphi^{2 \Rightarrow 2}(z - h(\underline{\mathbb{I}}_2)) \\ = \frac{(z + h_1)(z + h_2)}{(z - h_1)(z - h_2)} \cdot \frac{(z + h_3 - h_1)}{(z + h_2)} \cdot \frac{(z + h_3 - h_2)}{(z + h_1)} \end{cases}$$

BPS crystals

Quiver Yangians

Representations

Summary 0000000

Poles of $\Psi_{\mathrm{K}}^{(a)}(z)$ encode the positions of $a \in \mathrm{Add}(\mathrm{K})$ and $\mathrm{Rem}(\mathrm{K})$

• Each b in K contributes a factor of $\varphi^{a \leftarrow b}(z - h(b))$ to $\Psi_{\rm K}^{(a)}(z)$

(a)
$$h(b) \equiv \sum_{I \in \text{path}[\mathfrak{o} \to b]} h_I$$

$$\varphi^{a \leftarrow b}(u) \equiv (-1)^{|b \rightarrow a|\chi_{ab}} \frac{\prod_{I \in \{a \rightarrow b\}} (u + h_I)}{\prod_{I \in \{b \rightarrow a\}} (u - h_I)}$$

• loop constraint $\sum_{I \in \text{loop } L} h_I = 0$

Poles are always pushed to the surface of crystal ! "Melting rule" is automatically implemented

Quiver Yangians

Representations

Summary 0000000

Deriving algebra from its action on crystal representation

$$\begin{cases} \psi^{(a)}(z)|\mathbf{K}\rangle = \Psi_{\mathbf{K}}^{(a)}(z)|\mathbf{K}\rangle , \qquad \Psi_{\mathbf{K}}^{(a)}(u) \equiv \left(\frac{1}{z}\right)^{\delta_{a,1}} \prod_{b \in Q_0} \prod_{b \in \mathbf{K}} \varphi^{a \Leftarrow b}(u - h(\mathbf{b})) \\ e^{(a)}(z)|\mathbf{K}\rangle = \sum_{\mathbf{a} \in \mathrm{Add}(\mathbf{K})} \frac{\pm \sqrt{\mathrm{Res}_{u=h(\mathbf{a})}\Psi_{\mathbf{K}}^{(a)}(u)}}{z - h(\mathbf{a})} |\mathbf{K} + \mathbf{a}\rangle , \\ f^{(a)}(z)|\mathbf{K}\rangle = \sum_{\mathbf{a} \in \mathrm{Rem}(\mathbf{K})} \frac{\pm \sqrt{(-1)^{|a|}\mathrm{Res}_{u=h(\mathbf{a})}\Psi_{\mathbf{K}}^{(a)}(u)}}{z - h(\mathbf{a})} |\mathbf{K} - \mathbf{a}\rangle , \end{cases}$$

$$\begin{split} \psi^{(a)}(z) \, \psi^{(b)}(w) &= \psi^{(b)}(w) \, \psi^{(a)}(z) \;, \\ \psi^{(a)}(z) \, e^{(b)}(w) &\simeq \varphi^{a \Leftarrow b}(z - w) \, e^{(b)}(w) \, \psi^{(a)}(z) \;, \\ e^{(a)}(z) \, e^{(b)}(w) &\sim (-1)^{|a||b|} \varphi^{a \Leftarrow b}(z - w) \, e^{(b)}(w) \, e^{(a)}(z) \;, \\ \psi^{(a)}(z) \, f^{(b)}(w) &\simeq \varphi^{a \Leftarrow b}(z - w)^{-1} \, f^{(b)}(w) \, \psi^{(a)}(z) \;, \\ f^{(a)}(z) \, f^{(b)}(w) &\sim (-1)^{|a||b|} \varphi^{a \Leftarrow b}(z - w)^{-1} \, f^{(b)}(w) \, f^{(a)}(z) \;, \\ \left[e^{(a)}(z), f^{(b)}(w) \right\} &\sim -\delta^{a,b} \frac{\psi^{(a)}(z) - \psi^{(b)}(w)}{z - w} \;, \end{split}$$

Quiver Yangians

Representations

Summary 0000000

Relations in terms of modes

To compare to other algebras, convert to relations in terms of modes

- Read off mode expansion of $(e^{(a)}(z),\psi^{(a)}(z),f^{(a)}(z))$ from algebra's action on crystals
- Plug in mode expansions to algebraic relations and take singular terms:

$$\begin{bmatrix} \psi_n^{(a)} , \psi_m^{(b)} \end{bmatrix} = 0 ,$$

$$\sum_{k=0}^{|b \to a|} (-1)^{|b \to a|-k} \sigma_{|b \to a|-k}^{b \to a} [\psi_n^{(a)} e_m^{(b)}]_k = \sum_{k=0}^{|a \to b|} \sigma_{|a \to b|-k}^{a \to b} [e_m^{(b)} \psi_n^{(a)}]^k ,$$

$$\cdots$$

$$\begin{bmatrix} e_n^{(a)} , f_m^{(b)} \end{bmatrix} = \delta^{a,b} \psi_{n+m}^{(a)} ,$$

$$\begin{split} [A_n B_m]_k &\equiv \sum_{j=0}^k (-1)^j \binom{k}{j} A_{n+k-j} B_{m+j} , \quad [B_m A_n]^k \equiv \sum_{j=0}^k (-1)^j \binom{k}{j} B_{m+j} A_{n+k-j} . \\ \sigma_k^{a \to b} &\equiv k^{\text{th}} \text{ elementary symmetric sum of the set } \{h_I\} \text{ with } I \in \{a \to b\} \end{split}$$

BPS crystals

Quiver Yangians

Representations

Summary 0000000

Compare with known algebras

• For general toric CY₃, quiver Yangian is new algebra

Summary 0000000

Derivation of quiver Yangians

bootstrapped from action on crystals

L-Yamazaki '20

• confirmed from $\mathcal{N}=4$ quiver quantum mechanics

Galakhov-Yamazaki '20

BPS crystals

Quiver Yangians

Outline

Representations

Summary 0000000

- 2 BPS crystals
- 3 Quiver Yangians
- 4 Representations

5 Summary

BPS crystals

 \mathbb{C}^3

Quiver Yangians

Representations

Summary 0000000

So far: canonical crystal

resolved conifold

vacuum charge function $\psi_0^{(a)}(z) = \left(\frac{1}{z}\right)^{\delta_{a,o}}$

Representations

BPS crystals

Quiver Yangians

Representations

Summary 0000000

From canonical crystal to other crystals

- The canonical crystal corresponds to counting of closed BPS invariants in the non-commutative DT chamber.
- Can have crystal with other shapes

wall crossing to other chambers

Open BPS states

• Can consider arbitrary subcrystals of canonical crystal

Representations

Subscrystal ${}^{\ddagger}C$

1 How to describe an arbitrary subcrystal ${}^{\sharp}C$?

What is their relations to quiver Yangian?

What is their relation to the quiver?

- How to describe an arbitrary subcrystal ${}^{\sharp}C$?
 - \implies superposition of positive/negative canonical crystals
- 2 What is their relations to quiver Yangian?

 \implies non-vacuum representations of (shifted) quiver Yangians

What is their relation to the quiver?

 \implies different framing of the original quiver

Quiver Yangians

Summary 0000000

Decomposing subcrystal ${}^{\sharp}\mathcal{C}$ into positive/negative \mathcal{C}_0

- step-1: determine the positions of positive crystals
- step-2: determine the overlaps of positive crystals
 add negative crystals to cancel the overlaps

BPS crystals

Quiver Yangians

Representations

Summary 0000000

- step-3: determine the overlaps of negative crystals
 - \implies add positive crystals to cancel overlaps of negative crystals
- step-4: continue until ${}^{\sharp}C$ is reproduced (inclusion-exclusion principle)

 BPS crystals
 Quiver Yangians
 Representations

 00000000
 0000000000
 000000000

Decomposing subcrystal ${}^{\sharp}\mathcal{C}$ into positive/negative \mathcal{C}_0

• (optional) final step: truncate by adding negative crystals

Any simply-connected subcrystal can be decomposed into superpositions of positive/negative crystals.

Galakhov-L-Yamazaki '21

BPS crystals

Quiver Yangians

Representations

Summary 0000000

Crystal decomposition — infinite chamber for conifold

- positive crystal: starts at \square at x_1, x_2, x_3
- negative crystal: starts at 2 at y1, y2

Quiver Yangians

Representations

Summary 0000000

From subcrystal ${}^{\sharp}\!\mathcal{C}$ to ground state charge function ${}^{\sharp}\!\psi$

Galakhov-L-Yamazaki '21

• charge function of arbitrary crystal

$$\psi^{(a)}(z)|\mathbf{K}\rangle = \Psi_{\mathbf{K}}^{(a)}(z)|\mathbf{K}\rangle , \quad \Psi_{\mathbf{K}}^{(a)}(u) \equiv {}^{\sharp}\psi_{0}^{(a)}(z)\prod_{b\in Q_{0}}\prod_{b\in\mathbf{K}}\varphi^{a\Leftarrow b}(u-h(\mathbb{E}))$$

- General representations
- contribution from ground state

sub-crystal
$${}^{\sharp}\mathcal{C}$$
: ${}^{\sharp}\psi_{0}^{(a)}(z) = \frac{\prod_{\beta=1}^{\mathfrak{s}_{-}^{(a)}}(z-z_{-\beta}^{(a)})}{\prod_{\alpha=1}^{\mathfrak{s}_{+}^{(a)}}(z-\mathfrak{p}_{\alpha}^{(a)})}$
positive crystal staring at a : pole $\mathfrak{p}^{(a)} = h(a)$
negative crystal staring at a : zero $z_{-}^{(a)} = h(a)$

c.f. canonical crystal C_0 : $\psi_0^{(a)}(z) = \left(\frac{1}{z}\right)^{\delta_{a,o}}$

BPS crystals

Quiver Yangians

Representations

Summary 0000000

Shifted quiver Yangian

Galakhov-L-Yamazaki '21

• mode expansion of original quiver Yangian

$$\psi^{(a)}(z) = \begin{cases} \sum_{j=-1}^{\infty} \frac{\psi_j^{(a)}}{z^{j+1}} & \text{(w/o compact 4-cycle)} \\ \sum_{j=-\infty}^{\infty} \frac{\psi_j^{(a)}}{z^{j+1}} & \text{(w/ compact 4-cycle)} \end{cases}$$

• change of ground state charge function

$$\psi_0^{(a)}(z) = \left(\frac{1}{z}\right)^{\delta_{a,1}} \implies \qquad \sharp \psi_0^{(a)}(z) = \frac{\prod_{\beta=1}^{\mathfrak{s}_{-1}^{(a)}}(z - z_{-\beta}^{(a)})}{\prod_{\alpha=1}^{\mathfrak{s}_{+1}^{(a)}}(z - \mathfrak{p}_{\alpha}^{(a)})}$$

• mode expansion of shifted quiver Yangian

$$\psi^{(a)}(z) = \begin{cases} \sum_{j=-1}^{\infty} \frac{\psi_j^{(a)}}{z^{j+1+\mathbf{s}^{(a)}}} & \text{(w/o compact 4-cycle)} \\ \sum_{j=-\infty}^{\infty} \frac{\psi_j^{(a)}}{z^{j+1+\mathbf{s}^{(a)}}} & \text{(w/ compact 4-cycle)} \end{cases}$$
$$\mathbf{s}^{(a)} \equiv \mathbf{s}^{(a)}_+ - \mathbf{s}^{(a)}_-$$

Quiver Yangians

Representations

Summary 0000000

From subcrystal to framed quiver

Galakhov-L-Yamazaki '21

- \blacksquare For starting atom @ of each positive crystal, add an arrow $\infty
 ightarrow a$
- 2 For starting atom @ of each negative crystal, add an arrow from $a
 ightarrow \infty$
- Add terms to superpotential

- bootstrapped from action on subcrystals
- \bullet confirmed from $\mathcal{N}=4$ quantum mechanics for framed quiver

BPS crystals

Quiver Yangians

Representations

Summary 0000000

Generalize to trigonometric and elliptic version

Galakhov-L-Yamazaki '21

bond factor

$$\varphi^{a \Leftarrow b}(u) \equiv (-1)^{|b \to a|\chi_{ab}} \frac{\prod_{I \in \{a \to b\}} \zeta(u + h_I)}{\prod_{J \in \{b \to a\}} \zeta(u - h_J)}$$

 $\bullet \ \ \mathsf{rational} \longrightarrow \mathsf{trigonometric} \longrightarrow \mathsf{elliptic}$

$$\zeta(u) \equiv \begin{cases} u & (\text{rational}) \implies \text{quiver Yangians} \\ \sim \sinh \beta u & (\text{trig.}) \implies \text{toroidal quiver algebras} \\ \sim \theta_q(u) & (\text{elliptic}) \implies \text{elliptic quiver algebras} \end{cases}$$

- Bootstrap from crystal representation before central extension
- Confirm from gauge theory (2D (2,2) and 3D $\mathcal{N}=2$ theory)
- Turn on central extension and fix by consistency

In	t	0			
0	0	0	0	0	С

BPS crystals

Quiver Yangians

Outline

Representations

Summary 0000000

- 2 BPS crystals
- **3** Quiver Yangians
- 4 Representations

Quiver Yangians

Representations

Summary •000000

Summary of construction

Given a toric Calabi-Yau threefold X, consider the BPS sector of D-brane system of type IIA string on X

 $\textcircled{\ } \textbf{Q} \text{ uiver quantum mechanics } (Q,W)$

 \Downarrow define

- ③ { BPS states } = { colored crystals }
 act ↑↓ bootstrap
- $\textcircled{O} \ \mathsf{BPS} \ \mathsf{quiver} \ \mathsf{Yangian} \ Y(Q,W)$

Quiver Yangians

Representations

Summary 0000000

Summary of construction

Given a toric Calabi-Yau threefold X, consider the BPS sector of D-brane system of type IIA string on X

- Quiver quantum mechanics $(Q, W) \leftarrow$ Input
- ③ { BPS states } = { colored crystals }
 act
 ↑
 ↓ bootstrap

BPS crystals

Quiver Yangians

Representations

Summary 0000000

Summary: BPS algebra for general toric Calabi-Yau X_3

 $\label{eq:periodic quiver} 0 \ \text{periodic quiver} \ (Q,W) \Longrightarrow \varphi^{a \Leftarrow b}(z-w) \ \text{and} \ |a|$

2 quiver Yangian Y(Q, W)

$$\begin{split} \psi^{(a)}(z)\,\psi^{(b)}(w) &= \psi^{(b)}(w)\,\psi^{(a)}(z) \;, \\ \psi^{(a)}(z)\,e^{(b)}(w) &\simeq \varphi^{a \Leftarrow b}(z-w)\,e^{(b)}(w)\,\psi^{(a)}(z) \;, \\ e^{(a)}(z)\,e^{(b)}(w) &\sim (-1)^{|a||b|}\varphi^{a \Leftarrow b}(z-w)\,e^{(b)}(w)\,e^{(a)}(z) \;, \\ \psi^{(a)}(z)\,f^{(b)}(w) &\simeq \varphi^{a \Leftarrow b}(z-w)^{-1}\,f^{(b)}(w)\,\psi^{(a)}(z) \;, \\ f^{(a)}(z)\,f^{(b)}(w) &\sim (-1)^{|a||b|}\varphi^{a \Leftarrow b}(z-w)^{-1}\,f^{(b)}(w)\,f^{(a)}(z) \;, \\ \Big[e^{(a)}(z),f^{(b)}(w) \Big\} &\sim -\delta^{a,b}\frac{\psi^{(a)}(z)-\psi^{(b)}(w)}{z-w} \;, \end{split}$$

Advantages

- Explicit algebraic relations
- Apply to ALL toric Calabi-Yau threefolds

O confirmed from $\mathcal{N}=4$ quiver quantum mechanics

Subcrystal representation, shifted quiver Yangians, and framed quiver

Cover all other cyclic chambers, include open BPS states, and much more

Intro	BPS crystals	Quiver Yangians	Representations	Summary
000000	0000000	00000000000	0000000000	0000000

• All have generalization to trigonometric and elliptic version

- Translate to $\mathcal W$ algebras basis
- Truncation of the algebra
 - Correspond to non-zero D4 charge
 - Produce new rational VOA (and their *q*-deformation and elliptic deformation)
 - 8 Relations to other systems
Intro 000000 BPS crystals

Quiver Yangians

Representations

Summary 0000000

More future directions

- meaning of all the new subcrystal representations
- relation to other systems
- generalize to toric Calabi-Yau fourfolds?

Thank you for your attention !

Demanding that

vacuum character of algebra = generating function of crystal

gives additional cubic or higher relations

L-Yamazaki '21

- Reproduce Serre relations for affine Yangian of $\mathfrak{gl}_{n|m}$
- Open problem: classify Serre relations for general quiver Yangians