


















In this work we explore the θ dependence of the vacuum energy of the 4d SU(2) pure

Yang-Mills gauge theory. In sec. II, we perform lattices numerical calculations to determine

the first two coefficients in the θ expansion of the vacuum energy. The response of topological

excitations to the smearing procedure is investigated in detail in order to efficiently extract

physical information form lattice configurations. The coefficients determined at N = 2 are

compared to those previously obtained for N ≥ 3 to see whether the result at N = 2

can be seen as a natural extrapolation of those for N ≥ 3. In sec. III, we revisit CPN−1

model. After discussing characteristic features specific to CP1, a plausible argument about

the origin of the features is given. By applying the argument found in 2d CPN−1 model

to 4d SU(N) theory, we conclude that SU(2) Yang-Mills theory at θ = π is gapped with

spontaneous broken CP symmetry. The argument is made confident through a test using

available numerical data.

II. LATTICE SIMULATIONS

The vacuum energy can be expanded around θ = 0 as

E(θ)− E(0) =
χ

2
θ2
(
1 + b2 θ

2 + b4 θ
4 + · · ·

)
, (1)

where χ is the topological susceptibility, and b2i (i = 1, 2, 3, · · · ) are dimensionless coeffi-

cients describing the deviation of topological charge destribution from the Gaussian. These

quantities can be determined on the lattice from configurations generated at θ = 0 as

χ =
〈Q2〉θ=0

V
, (2)

b2 = −〈Q4〉θ=0 − 3 〈Q2〉2θ=0

12 〈Q2〉θ=0
, (3)

b4 =
〈Q6〉θ=0 − 15 〈Q2〉θ=0 〈Q4〉θ=0 + 30 〈Q2〉3θ=0

360 〈Q2〉θ=0
, (4)

where Q is the topological charge, whose precise definition is given in eqs. (10)-(14), and

〈· · · 〉θ=0 denotes an ensemble average over configurations generated with θ = 0. According

to the large N analysis [2, 4], these quantities can be expressed, as a function of N , as

χ(N) = χ(∞) +O(N−2) , (5)

b2i(N) =
b(1)2i

N2i
+O

(
1

N2i+2

)
. (6)
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FIG. 7: Histogram of Q for four ensembles at nAPE = 0, 20, 100.

Figure 8 shows the topological susceptibility in lattice unit, a4χ(nAPE) = 〈Q2〉/Nsite, as a

function of nAPE. A mild decrease is seen for nAPE ≥ 20 as expected from a negative constant

observed in Fig. 5. We determine topological susceptibility at each lattice by extrapolating

the smeared data in the second phase to nAPE → 0 because the “falling” is supposed to take

place even in the first pahse. The data points in nAPE ∈ [20, 40] are well described by a

linear function,

a4χ(nAPE) = a4χ(0) + c1 nAPE . (17)

The fit results are tabulated in Tab. II.

Figure 9 shows nAPE dependence of b2. Since b2 is found to be constant for nAPE ≥ 20,

β NS a4χ(0)× 104 c1 × 107 b2(0)× 102

1.750 16 3.08(2) −9.4(3) −5(5)

1.850 16 1.10(1) −1.8(1) −6(3)

1.975 16 0.269(8) −0.22(2) −4(2)

1.975 24 0.254(3) −0.20(1) −7(4)

TABLE II: Fit results.
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FIG. 4: Distribution of topological charge projected onto z-t plane at nAPE = 50, 60, 100, 200,

450, and 470.

peak disappears. Between nAPR = 100 and 200, a positive peak seems to be smeared but not

suddenly disappear. We guess that a pair annihilation or something complicated happens

in the latter case.

From these observations, we conclude that the changes of Q occuring in the second phase

are dominated by the “falling” of instantons or anti-instantons. The “falling” probably
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FIG. 9: nAPE dependence of b2.

2. linear in a2 using all lattices

These two are chosen because they turn out to yield the smallest and largest value for χ/T 4
c

among other reasonable choices. In either quantities, the constant fit is taken as the central

value, and the difference between two methods is taken as the systematic uncertainty in the

final result.

The continuum limit of χ/T 4
c turns out to strongly depend on the functional form, and as

a result the error is dominated by the systematic uncertainty. On the other hand, thanks to

the constant behavior for b2, the inclusion of the linear term into the functional form does

not alter the limit for the constant fit by much. The final results thus obtained are

χ

T 4
c

= 0.200(39) ,
χ1/4

Tc
= 0.674(31) , b2 = −0.049(20) , (18)

where the errors are summed in quadrature.

In Refs. [14–16], the topological susceptibility χ is calculated in SU(N) gauge theory with

several values of N to study the large N behavior. In Refs. [14, 39, 45–47], χ is estimated for
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FIG. 10: The continuum limit of χ/T 4
c and b2. The solid lines in both plots are the results from a

constant fit using only two finer lattices, and the dashed lines are those from a linear fit using all

lattices.

SU(2) gauge theory. As for b2, the N dependence is studied for N ≥ 3 in Refs. [15, 16]. No

result is available for N = 2. Figure 11 shows the summary plot for χ/σ2
str and b2, including

our results. In this plot, we use Tc/
√
σstr = 0.7091(36) [34] to change the normalization to

χ/σ2
str. The solid lines shown in the plots are the linear fit performed in Ref. [16] using the

data at N = 3, 4, 6.

The results of χ/σstr for SU(2) are slightly larger than the solid line, but the deviation is

accountable by the next leading order correction of O(1/N4). It is then natural to expect

that dynamics of SU(2) gauge theory is a smooth extrapolation of the large N dynamics to

N = 2 and nothing special happens in between.

b2 at N = 2 obtained in this work turns out to be consistent with the instanton pre-

diction, bDIGA
2 = −1/12, within 1.7 σ. However, it is more consistent with the naive linear

extrapolation from the N ≥ 3 data to N = 2. This observation gives further support to the

above expectation, i.e. nothing special happens between N ≥ 3 and N = 2. Notice that, in

Ref. [48] b4 = 6(2)× 10−4 is obtained in the continuum limit, which clearly differs from the

instanton calculus, bDIGA
4 = 1/360.
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FIG. 11: The N dependence of χ/σ2
str and b2. Each data point is slightly shifted horizontally to

make it easier to see. The horizontal dashed line in the b2 plot represents the dilute instanton gas

approximation (DIGA).
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FIG. 11: The N dependence of χ/σ2
str and b2. Each data point is slightly shifted horizontally to

make it easier to see. The horizontal dashed line in the b2 plot represents the dilute instanton gas

approximation (DIGA).
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