Contribution to "Strings, Fields and Holograms Monte Verità, Ascona, 11 - 15 October 2021

Adrián Sánchez Garr

UNSPACE ODISSE

Université de Genève

(L. Susskind, 2018.)

COMPLEXITY IN HOLOGRAPHY?

- What boundary observable describes the growth of the Einstein-Rosen Bridge (ERB)?
- It could be complexity (L. Susskind, 2013).

But what complexity??

> Should saturate at Heisenberg time, $t_H \sim e^S$.

► No *external* tolerance parameter.

2

STATES OR OPERATORS?

- ERB of eternal AdS black hole should be captured by the evolution of $|TFD\rangle$ in the Schrödinger picture.
- 2013).
- \longrightarrow Captured by evolution of $|TFD\rangle$ perturbed by an operator insertion $\mathcal{O}(t)$.
- ----- Motivates the study of operator complexity in the Heisenberg picture.
- This gives access to a wide range of time scales:
- > Scrambling time, $t_s \sim \log S$ (infalling particle crosses the BH horizon).
- spectrum is probed...)

-Butterfly effect: backreacted geometry due to shockwave of infalling particle (Shenker & Stanford,

> Heisenberg time, $t_H \sim e^S$ (geometrical description fails, Hilbert space fully explored, fine-grained

KRYLOV SPACE

- Take a Hilbert space of states \mathcal{H} with dim $\mathcal{H} = D$.

 \implies Operator space \mathcal{H} will have dim

- Time evolution generator in \mathcal{H} is the Liouvillian $\mathcal{L} := [H, \cdot]$, as:

$$\mathcal{O}(t) = e^{iHt} \mathcal{O}e^{-iHt} = e^{it\mathcal{L}} \mathcal{O} = \mathcal{O} + it[H, \mathcal{O}] - \frac{t^2}{2} \left[H, [H, \mathcal{O}] \right] + \dots$$

- Define **Krylov space** as $\mathscr{H}_{\mathcal{O}} := \operatorname{span} \left\{ \mathscr{L}^{n} \mathcal{O} \right\}_{n=0}^{+\infty}$

 \implies Always contains $\mathcal{O}(t)$. What is its dimension, K??

- A notion of complexity adapted to time evolution of an initial operator $\mathcal{O} \equiv \mathcal{O}(0)$.

$$\widehat{\mathscr{H}} = D^2.$$

KRYLOV SPACE DIMENSION AND UPPER BOUND

The spectrum of \mathscr{L} is made up of all possible energy differences $E_a - E_b \equiv \omega_{ab}$:

$$|E_a\rangle\langle E_b| \equiv |\omega_{ab}\rangle \implies \mathscr{L}|\omega_{ab}\rangle = \omega_{ab}|\omega_{ab}\rangle$$

Spectral decomposition of $|O| = \sum_{ab} O_{ab}$

 \implies K = Number of non-zero eigenspace projections of $| \mathcal{O} \rangle$!!

Immediate upper bound: $K \le D^2 - D + 1$ $\begin{cases}
-Saturated in chaotic systems (ETH). \\
-Degeneracies reduce K
\end{cases}$

$$_{b}|\omega_{ab}) \implies \mathscr{L}^{n}|\mathcal{O}\rangle = \sum_{ab} \left(\omega_{ab}^{n} O_{ab} | \omega_{ab} \right)$$

LANCZOS COEFFICIENTS AND KRYLOV CHAIN DYNAMICS

$$\left\{ \left| \mathcal{O} \right\rangle, \mathcal{L} \left| \mathcal{O} \right\rangle, \mathcal{L}^{2} \left| \mathcal{O} \right\rangle, \dots \right\}$$

- Re-orthogonalization coefficients: Lanczos coefficients, $\{b_n\}$.

- We can build and ordered orthonormal basis for Krylov space (Lanczos algorithm).

$$\longmapsto \{ | \mathcal{O}_0 \rangle = | \mathcal{O} \rangle, | \mathcal{O}_1 \rangle, | \mathcal{O}_2 \rangle, \dots \}$$

Krylov elements

1d hopping model!

K-COMPLEXITY AND K-ENTROPY

- Evolution of $| \mathcal{O}(t) \rangle$ encoded in wave function $\varphi(t)$:

 $|\mathcal{O}(t)| = \sum i^n \varphi_n(t) |\mathcal{O}_n|$

K-COMPLEXITY:
$$C_{K}(t) = \sum_{n} n \left| \varphi_{n}(t) \right|^{2}$$

For maximally chaotic systems:

-Thermodynamic limit (Altman et al., 2019

-Finite size, post-scrambling (Barbón et al.,

n
K-ENTROPY:

$$S_{K}(t) = -\sum_{n} |\varphi_{n}(t)|^{2} \log |\varphi_{n}(t)|^{2}$$

b):
$$b_n \sim \alpha n$$
, $C_K(t) \sim e^{2\alpha t}$, $S_K(t) \sim t$
, 2019): $b_n \rightarrow b_{\infty}$, $C_K(t) \sim t$, $S_K(t) \sim \log(t)$

LANCZOS COEFFICIENTS IN SYK

$$H = \sum_{ijkl} J_{ij;kl} c_i^{\dagger} c_j^{\dagger} c_k c_l; \quad \mathcal{O} = c_1^{\dagger} c_2 + \text{h.c.}$$

- -Upper bound saturated, $K = D^2 D + 1$.
- -Linear growth up to $n \sim S$.
- **Non-perturbative descent** with slope $\sim e^{-2S}$.
- Reaches zero at $n = K \sim e^{2S}$.

(E. Rabinovici, ASG, R. Shir, J. Sonner, 2020.)

K-COMPLEXITY IN SYK

K-ENTROPY IN SYK

10

CONCLUSIONS

- parameter.
- ► It is very sensitive to the spectral structure.
- ► Non-perturbative descent of $b_n \longrightarrow$ Boundedness and saturation of $C_K(t)$.
- Some questions:
 - Bulk interpretation? -
 - Problems: Initial condition dependence; time-dependent Hamiltonians...
 - Probe of quantum chaos? (Dymarsky & Smolkin, 2021; work in progress...)

➤ K-complexity is a notion of complexity that doesn't depend on an external tolerance

Late time physics!

11

i Thanks!

KRYLOV SPACE DIMENSION – VANDERMONDE ARGUMENT

- Liouvillian eigenvalues: $\omega_{ab} = E_a - E_b =$

- In coordinates:

⇒ Vandermonde matrix!!

$$\Rightarrow \omega_{aa} = 0, \forall a = 1, \dots, D.$$

$$\implies \mathscr{L}^{n} | \mathscr{O}) = \delta_{n0} \sum_{a=1}^{D} O_{aa} | \omega_{aa} \rangle + \sum_{a \neq b} \omega_{ab}^{n} O_{ab} | \omega_{ab} \rangle$$

.

LANCZOS ALGORITHM

1. Set
$$b_0 \equiv 0$$
 and $|\mathcal{O}_{-1}| \equiv 0$.
2. $|\mathcal{O}_0| = \frac{1}{\sqrt{(\mathcal{O} | \mathcal{O})}} |\mathcal{O}|$

3. For $n \ge 1$: $|\mathscr{A}_n| = \mathscr{L}|\mathscr{O}_{n-1}| - b_{n-1}|$

4.
$$b_n = \sqrt{(\mathscr{A}_n | \mathscr{A}_n)}$$

5. If $b_n = 0$ stop. Otherwise $|\mathcal{O}_n| = \frac{1}{b_n} |\mathcal{A}_n|$

Construct orthonormal basis given some inner product, e.g. $(A | B) = \frac{1}{D} \operatorname{Tr} [A^{\dagger}B]$.

 $\longrightarrow \left\{ b_n \right\}_{n=1}^{K-1} \text{ (Lanczos coefficients)}$ $\longrightarrow \left\{ |\mathcal{O}_n| \right\}_{n=0}^{K-1} \text{ (Krylov basis)}$ -Due to linear independence:

$$|\mathscr{A}_K) = 0 \implies b_K = 0,$$

And the algorithm terminates.

Problem: numerically unstable!!

$$\mathcal{O}_{n-2}$$

RELATION BETWEEN LANCZOS COEFFICIENTS AND CORRELATION FUNCT

Inner product \longrightarrow 2-point function: (A | B) =

Autocorrelation function:

$$C(t) := \langle \mathcal{O}\mathcal{O}(t) \rangle = \left(\mathcal{O} \mid \mathcal{O}(t) \right) = \left(\mathcal{O} \mid e^{it\mathcal{L}} \mid \mathcal{O} \right) = \left(\mathcal{O}_0 \mid e^{it\mathcal{L}} \mid \mathcal{O}_0 \right) = \sum_{n=0}^{+\infty} \frac{(it)^n}{n!} \left(\mathcal{O}_0 \mid \mathcal{L}^n \mid \mathcal{O}_0 \right)$$

Defining moments μ_{2n} such that $\langle OO(t) \rangle = \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} |\psi_{2n}|^{2k} |\psi_{2n}|^{2k}$ n =

$$\implies \mu_{2n} = \left(\mathcal{O}_0 \left| \mathscr{L}^{2n} \right| \mathcal{O}_0 \right) = \begin{bmatrix} \begin{pmatrix} 0 & b_1 & 0 \\ b_1 & 0 & b_2 \\ 0 & b_2 & 0 \\ \vdots & \ddots \end{bmatrix}$$

$$= \frac{1}{D} \operatorname{Tr} \left[A^{\dagger} B \right]$$

$$\sum_{n=0}^{\infty} \frac{(it)^n}{n!} \mu_{2n}$$

 $\begin{array}{ccc} 0 & \dots & 0 \\ 0 & \dots & 0 \end{array}$ **J** 00

 \longrightarrow Dyck paths. \longrightarrow Invertible $b_n \leftrightarrow \mu_{2n}$. \longrightarrow Analytical structure of C(t).

