Non-perturbative Cosmological Bootstrap

Kamran Salehi Vaziri October 14, 2021

Based on ArXiv:2107.13871 with Matthijs Hogervorst and João Penedones

- dS is the simplest model of expanding universe.
 A good approximation of our universe in early times and now!
- First step: to study QFT in fixed (non-dynamical) background
- Several studies of this subject including recent developments:
 - Cosmological bootstrap: perturbative
 - [Arkani-Hamed, Baumann, Lee, Pimentel] [Pajer, Stefanyszyn, Supel] [Goodhew, Jazayeri, Pajer]
 - Dictionary between dS and EAdS diagrams

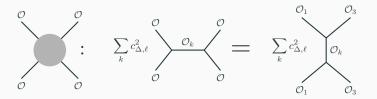
[Sleight, Taronna] [Di Pietro, Gorbenko, Komatsu]

Goal

- Bootstrap approach: Study the implications of general properties such as symmetry and unitarity
- Conformal bootstrap:

$$\langle \mathcal{O}(x_1)\mathcal{O}(x_2)\mathcal{O}(x_3)\mathcal{O}(x_4)\rangle = \sum_{\Delta,\ell} c_{\Delta,\ell}^2 G_{\Delta,\ell}(x_1,\ldots,x_4)$$

with $G_{\Delta,\ell}$ known and $c_{\Delta,\ell}^2 \ge 0$.



Crossing symmetry: expanding the four point function in different channels leads to bounds on CFT data (e.g. determination of 3d Ising model critical exponents)

Goal

- Bootstrap approach: Study the implications of general properties such as symmetry and unitarity
- Conformal bootstrap:

$$\langle \mathcal{O}(x_1)\mathcal{O}(x_2)\mathcal{O}(x_3)\mathcal{O}(x_4)\rangle = \sum_{\Delta,\ell} c_{\Delta,\ell}^2 G_{\Delta,\ell}(x_1,\ldots,x_4)$$

with $G_{\Delta,\ell}$ known and $c_{\Delta,\ell}^2 \ge 0$.

• Non-perturbative cosmological bootstrap:

$$\langle \mathcal{O}(x_1)\mathcal{O}(x_2)\mathcal{O}(x_3)\mathcal{O}(x_4)\rangle = \sum_{\ell} \int d\nu \ I_{\nu,\ell}\Psi_{\nu,\ell}(x_1,\ldots,x_4)$$

with $\Psi_{\nu,\ell}$ known and $I_{\nu,\ell} \geq 0$.

dS_{d+1} spacetime

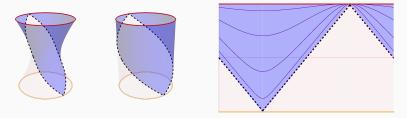
• A hyperboloid in \mathbb{M}^{d+2} :

$$-X^{0^2} + X^{1^2} + \dots + X^{d+1^2} = R^2$$

Maximally symmetric with constant positive curvature

• Conformal coordinates (flat slicing):

$$ds^{2} = R^{2} \frac{-d\eta^{2} + d\vec{x}^{2}}{\eta^{2}}, \quad \eta \in (-\infty, 0), \quad \vec{x} \in \mathbb{R}^{n}$$



• Symmetry group of dS_{d+1} : SO(d+1,1); Conformal algebra

Representation theory

- Unitary irrep of dS isometry group: infinite dimensional labelled by quantum numbers ℓ (spin) and Δ (scaling dimension):
 - Principal series: $\Delta = \frac{d}{2} + i\nu, \ \nu \in \mathbb{R}$ (in massive scalar: $mR \ge \frac{d}{2}$ - heavy field)
 - Complementary series: $\Delta = \frac{d}{2} + c$ (in massive scalar: $mR \leq \frac{d}{2}$ - light field)
 - Discrete series: $\Delta \in (half-)Integer$
- In flat slicing, states within a multiplet take the form: $|\Delta, \vec{x}\rangle_A$ and transform like primary operators under dS symmetry generators ($\ell = 0$):

$$P_{\mu} |\Delta, \vec{x}\rangle = i\partial_{\mu} |\Delta, \vec{x}\rangle , \quad D |\Delta, \vec{x}\rangle = (x \cdot \partial + \Delta) |\Delta, \vec{x}\rangle , \quad \cdots$$

• Resolution of identity-completeness:

$$\mathbb{1} = \sum_{\ell} \int_{\Delta} \int_{x} \left| \Delta, \vec{x} \right\rangle \left\langle \Delta, \vec{x} \right.$$

Boundary operators

• Boundary operators:

$$\phi(\eta, \vec{x}) = \sum_{k} b_{\phi k}(-\eta)^{\Delta_k} (\mathcal{O}_k(\vec{x}) + \operatorname{des})$$

where $\{\Delta_k\}$ is unrelated to unitary irreps of dS.

- The action of dS isometries on \mathcal{O}_k at $\eta = 0 \Longrightarrow$ conformal theory
- Hermiticity implies existence of both Δ_k and Δ_k^*
- No state-operator correspondence unlike AdS

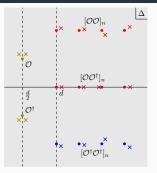
Källén–Lehmann decomposition

$$G_{2}(\xi) = \langle \phi(\eta_{1}, \vec{x}_{1}) \phi(\eta_{2}, \vec{x}_{2}) \rangle = \int_{\Delta} \int_{x} \langle \Omega | \phi(\eta_{1}, \vec{x}_{1}) | \Delta, \vec{x} \rangle \langle \Delta, \vec{x} | \phi(\eta_{2}, \vec{x}_{2}) | \Omega \rangle$$
$$= \int_{\Delta} \underbrace{|c_{\phi}(\Delta)|^{2}}_{\rho_{\Delta}} G_{f}(\xi, \Delta)$$

- $\langle \Omega | \phi(\eta_1, \vec{x}_1) | \Delta, \vec{x} \rangle$ are fixed by dS ismoetries up to a normalization factor c_{ϕ} .
- Unitarity of the bulk theory $\Longrightarrow \rho_{\Delta} \ge 0$
- Using analytic continuation from S^{d+1} , we found a Froissart-Gribov type inversion formula for ρ_{Δ}

$$\rho_{\Delta} = C(\Delta) . \int_{1}^{\infty} d\xi \ _{2}F_{1}(1-\Delta, 1-d+\Delta, (3-d)/2, (1-\xi)/2) \text{ Disc } [G(\xi)]$$

Spectral density



• Deforming the contour away from principal series and take the late-time limit $\eta \to 0^- \Longrightarrow$ Residues of ρ correspond to boundary operators:

$$(b_{\phi k})^2 \sim \operatorname{Res} \rho_{\Delta_k}$$

- Examples:
 - free massive $\langle \phi(\eta_1, \vec{x}_1) \phi(\eta_2, \vec{x}_2) \rangle$ and $\langle \phi^2(\eta_1, \vec{x}_1) \phi^2(\eta_2, \vec{x}_2) \rangle$
 - bulk CFT $\langle \phi(\eta_1, \vec{x}_1) \phi(\eta_2, \vec{x}_2) \rangle \sim \frac{1}{(1-\xi)^{2\delta}}$

$$\begin{split} \langle \mathcal{O}_1(x_1)\mathcal{O}_2(x_2)\mathcal{O}_3(x_3)\mathcal{O}_4(x_4) \rangle &= \sum_{\ell} \int_{\Delta} \int_{x} \langle \mathcal{O}_1(x_1)\mathcal{O}_2(x_2) | \Delta, \vec{x} \rangle \langle \Delta, \vec{x} | \mathcal{O}_3(x_3)\mathcal{O}_4(x_4) \rangle \\ &= \sum_{\ell} \int_{\Delta} I_{\Delta,\ell} \Psi_{\Delta,\ell}(x_1,\dots,x_4) \end{split}$$

- Like in two-point function, each factor is fixed by conformal symmetry $\langle \mathcal{O}_1(x_1)\mathcal{O}_2(x_2)|\Delta, \vec{x}\rangle = \mathcal{F}^{12}_{\Delta,\ell} \langle \mathcal{O}_1(x_1)\mathcal{O}_2(x_2)O(x)\rangle$
- Positivity condition: for example $\langle \mathcal{O}\mathcal{O}^{\dagger}\mathcal{O}^{\dagger}\mathcal{O} \rangle \Longrightarrow I_{\Delta,\ell} \geq 0$
- Few implications of positivity:
 - Necessity of ultra local terms in Generalized Free Field: $\langle \mathcal{O}\mathcal{O}^{\dagger}\mathcal{O}^{\dagger}\mathcal{O} \rangle \ni \delta(x_1 - x_3)\delta(x_2 - x_4)$
 - Bounds for breakdown of perturbative unitarity for $\lambda \phi^4$

• Crossing equation $+ I_{\Delta,\ell} > 0$. Let's Bootstrap!

• We focused on d = 1 and $\langle OOOO \rangle$ with a regulated crossing equation [an integral over cross ratio $\int_z \Longrightarrow (\gamma, \sigma)$]:

$$\int_0^\infty \frac{d\nu}{2\pi} I_{\frac{1}{2}+i\nu} \tilde{F}_{\frac{1}{2}+i\nu}(\gamma,\sigma) + \sum_{n\in 2\mathbb{N}} I_n \tilde{F}_n(\gamma,\sigma) + D(\gamma,\sigma) = 0$$

• Non trivial bounds: assuming gaps (restricting support in ν) one obtains e.g. an upper bound on I_2 .

Future directions

- What type of irreps actually appear for generic interacting QFTs? Free field Fock space decomposition. CFT (decompose conformal multiplets of SO(d + 1, 2) into irreps of SO(d + 1, 1))
- Källén-Lehmann for spinning two-point functions
- What are the interesting questions—where/what to look at/for? + Technical obstacles
- Better regularised crossing equations!
- Position-less crossing equation

$$I_{\Delta,\ell}^{t} = \frac{1}{n_{\Delta,\ell}} \sum_{\ell'} \int \frac{d\Delta'}{2\pi i} I_{\Delta',\ell'}^{s} \mathcal{J}_{d}(\tilde{\Delta}',\ell',\tilde{\Delta},\ell|\tilde{\Delta}_{1},\tilde{\Delta}_{2},\tilde{\Delta}_{3},\tilde{\Delta}_{4}) + \mathcal{D}_{\Delta,\ell}^{st}$$

• How about gravity?

Thank You!