NRCFT at large-Q

Conclusion 000

b UNIVERSITÄT

Operator spectrum of NRCFTs at large charge

Vito PELLIZZANI

Albert Einstein Center for Fundamental Physics Institute for Theoretical Physics University of Bern

Strings, Fields and Holograms, Ascona, 14.10.21

Based on [Orlando, VP, Reffert '20], [VP '21]

[Hellerman, Orlando, VP, Reffert, Swanson, to appear]

NRCFT at large-Q

Conclusion 000

Introduction

NRCFT at large-Q

Conclusion

universităt een ・ロト・ほト・ミトミン き つくで Introduction ○●○○ NRCFT at large-Q

Conclusion 000

Motivation

Broad question: can we understand theory space?

NRCFT at large-Q

Conclusion 000

UNIVERSITÄT

Motivation

Broad question: can we understand theory space?

- Ambitious \rightarrow restrict to constrained theories. Here, CFTs.
- Bootstrap does an amazing job at collecting CFT data.
- Otherwise: large *R*-charge, large spin, etc.

NRCFT at large-Q

Conclusion 000

b UNIVERSITÄT

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Motivation

What if we keep adding symmetries?

- Natural guess: large internal charge Q (this talk: U(1) symmetry)
- If this limit is tractable, is there a sense in which the predictions can be universal?

NRCFT at large-Q 00000 Conclusion 000

UNIVERSITÄT

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Toolbox

Effective field theory (EFT)

In the Wilsonian picture:

- Write down all possible operators.
- Wilsonian coefficients encode UV physics.
- Specify two well-separated scales Λ_{UV} and Λ_{IR} .
- Expansion parameter: $\epsilon \equiv \frac{\Lambda_{IR}}{\Lambda_{UV}} \ll 1$.
- Observables given by an asymptotic series in ϵ (or ϵ^2)

$$\langle \mathcal{O} \rangle = \# \left[\alpha_1 + \alpha_2 \epsilon^2 + \alpha_3 \epsilon^4 + \ldots \right]$$

(this talk: ignore non-perturbative effects).

NRCFT at large-Q

Conclusion 000

Toolbox

Relativistic state-operator correspondence

• Operator spectrum on $\mathbb{R}^{d+1} \leftrightarrow$ Energy spectrum on $\mathbb{R} \times S^d_R$

$$\Delta = E \cdot R.$$

Goal: compute Δ_Q of lowest op. of charge Q via the GS energy E₀.

NRCFT at large-Q 00000 Conclusion 000

b UNIVERSITÄT

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Context: the relativistic O(2) model

In this case:

- Fixed-Q sector \leftrightarrow superfluid phase for the Goldstone.
- Scales: $\Lambda_{IR} = \frac{1}{R}$ and $\Lambda_{UV} = \rho^{\frac{1}{d}} = \frac{Q^{\frac{1}{d}}}{R}$.
- Expansion parameter:

$$\epsilon = \frac{\Lambda_{IR}}{\Lambda_{UV}} = Q^{-\frac{1}{d}}.$$

• With $Q \gg 1$, we have $\epsilon \ll 1$ and the EFT regime is well-defined.

Introduction 000●

NЛ

NRCFT at large-Q

Conclusion 000

Context: the relativistic O(2) model

therefore over,

$$\begin{array}{l} \mathrm{charge \ density} \sim \frac{Q}{\mathrm{Vol}} \sim \frac{Q}{R^{d}} \\ \mathrm{energy \ density} \sim \frac{E_{0}}{\mathrm{Vol}} \sim \frac{\Delta_{Q}}{R^{d+1}} \\ \mathrm{are \ finite, \ even \ if \ } R \rightarrow \infty, \ \mathrm{hence} \\ \Delta_{Q} \sim Q^{\frac{d+1}{d}} \end{array}$$

to leading order.

NRCFT at large-Q

Conclusion 000

b UNIVERSITÄT

Context: the relativistic O(2) model

We conclude that [Hellerman, Orlando, Reffert, Watanabe '15] [Cuomo '20]

$$\Delta_Q = Q^{\frac{d+1}{d}} \left[\alpha_1 + \frac{\alpha_2}{Q^2_d} + \frac{\alpha_3}{Q^4_d} + \dots \right]$$
$$+ Q^0 \left[\beta_0 + \frac{\beta_1}{Q^2_d} + \frac{\beta_2}{Q^4_d} + \dots \right] + \dots$$

in (d+1)-dimensions.

Second line given by the Casimir energy, based on the spectrum

$$\omega_l = \sqrt{rac{l(l+d-1)}{d}} + \mathcal{O}(Q^{-rac{2}{d}}),$$

with multiplicity $\frac{(2l+d-1)\Gamma(l+d-1)}{\Gamma(l+1)\Gamma(d)}$ on the *d*-sphere.

Introduction 000● NRCFT at large-Q

Conclusion 000

Context: the relativistic O(2) model

Typically,

$$\Delta_{Q}^{(d=2)} = \alpha_1 Q^{\frac{3}{2}} + \alpha_2 \sqrt{Q} - 0.0937 + \dots,$$

and

$$\Delta_Q^{(d=3)} = \alpha_1 Q^{\frac{4}{3}} + \alpha_2 Q^{\frac{2}{3}} - \frac{1}{48\sqrt{3}} \log Q + \alpha_3 + \dots$$

NRCFT at large-Q •0000 Conclusion 000

Introduction

NRCFT at large-Q

Conclusion

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Nonrelativistic conformal invariance

Consider the so-called Schrödinger group:

- Galilean algebra
- Central extension: particle number symmetry (U(1))
- Scale transformation: $(t,ec{x})
 ightarrow (e^{2 au}t,e^{ au}ec{x})$

• SCT:
$$(t, \vec{x}) \rightarrow \left(\frac{t}{1+\lambda t}, \frac{\vec{x}}{1+\lambda t}\right)$$

b UNIVERSITÄT

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Nonrelativistic state-operator correspondence

Schrödinger algebra also has an automorphism such that

• Operator sp. on $\mathbb{R}^{d+1} \leftrightarrow$ Energy sp. in $A_0(\vec{x}) = \frac{m\omega^2}{2\hbar} |\vec{x}|^2$ [Werner, Castin '05] [Nishida, Son '07] [Goldberger, Khandker, Prabhu '14]

$$\Delta = \frac{E}{\hbar \omega}$$

(from now on: $\hbar=m=1$).

- Defines a "turning point" region \rightarrow spherical cloud/droplet.
- Focus on Δ_Q of lowest op. of charge Q via GS energy E_0 .

NRCFT at large-Q00000 Conclusion 000

b UNIVERSITÄT

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Effective field theory

Let χ be the Goldstone associated with Q.

- Fixed-Q sector \leftrightarrow superfluid phase for χ in the trap.
- IR scale: radius of the cloud $R_{cl} \sim rac{Q^{rac{1}{2d}}}{\sqrt{\omega}}$.
- UV scale: charge density (in the center) $ho\sim\omega^{rac{d}{2}}\sqrt{Q}.$
- Expansion parameter:

$$\epsilon = rac{R_{cl}^{-1}}{
ho^{rac{1}{d}}} \sim Q^{-rac{1}{d}}.$$

Well-defined low-energy regime for $Q \gg 1!$

NRCFT at large-Q00000 Conclusion 000

Effective field theory

Since
$$\operatorname{Vol} \sim \frac{\sqrt{Q}}{\omega^{\frac{d}{2}}}$$
 and $E_0 = \omega \Delta_Q$,
charge density $\sim \frac{Q}{\operatorname{Vol}} \sim \omega^{\frac{d}{2}} \sqrt{Q}$
energy density $\sim \frac{E_0}{\operatorname{Vol}} \sim \frac{\omega^{\frac{d}{2}+1}}{\sqrt{Q}} \Delta_Q$.

Then, the limit $\omega
ightarrow$ 0 tells us that

$$\Delta_Q \sim Q^{rac{d+1}{d}}$$

to leading order.

NRCFT at large-Q0000• Conclusion 000

b UNIVERSITÄT

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Intermediate conclusion

So far, it seems that

$$\Delta_Q = Q^{rac{d+1}{d}} \left[a_1 + rac{a_2}{Q^{rac{2}{d}}} + rac{a_3}{Q^{rac{4}{d}}} + \ldots
ight]$$

plus quantum corrections (Casimir energy).

- Surprising? Perhaps.
- Disappointing? Somewhat...

NRCFT at large-Q0000• Conclusion 000

b UNIVERSITÄT

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Intermediate conclusion

But what about the boundary?

- Associated with the vanishing of the charge density ("Dirichlet").
- EFT not well-defined in its proximity.

NRCFT at large-Q0000• Conclusion 000

Intermediate conclusion

In fact,

- Operators can be placed on the boundary.
- The corresponding expansion parameter is

$$ilde{\epsilon} \sim Q^{-rac{2}{3d}}.$$

• Contributions to Δ_Q start at $Q^{rac{2d-1}{3d}}$.

NRCFT at large-Q

Conclusion •00

Introduction

NRCFT at large-Q

Conclusion

Results

A careful computation leads to

[Son, Wingate '05] [Kravec, Pal '18] [Orlando, VP, Reffert, '20] [VP '21]

[Hellerman, Orlando, VP, Reffert, Swanson, to appear]

$$\Delta_Q = Q^{\frac{d+1}{d}} \left[a_1 + \frac{a_2}{Q^{\frac{2}{d}}} + \frac{a_3}{Q^{\frac{4}{d}}} + \dots \right] + Q^{\frac{2d-1}{3d}} \left[b_1 + \frac{b_2}{Q^{\frac{2}{3d}}} + \frac{b_3}{Q^{\frac{4}{3d}}} + \dots \right] + Q^{\frac{d-3}{3d}} \left[c_1 + \frac{c_2}{Q^{\frac{2}{3d}}} + \frac{c_3}{Q^{\frac{4}{3d}}} + \dots \right] + \dots$$

In particular

$$\Delta_Q^{(d=2)} = d_1 Q^{\frac{3}{2}} + d_2 \sqrt{Q} \log Q + d_3 \sqrt{Q} + d_4 Q^{\frac{1}{6}} - 0.2942 + \dots,$$

and

$$\Delta_Q^{(d=3)} = d_1 Q^{\frac{4}{3}} + d_2 Q^{\frac{2}{3}} + d_3 Q^{\frac{5}{9}} + d_4 Q^{\frac{1}{3}} + d_5 Q^{\frac{1}{9}} + \frac{1}{3\sqrt{3}} \log Q + d_6 \underbrace{\mathcal{U}^{b_{\text{LMINERSITAT}}}_{\text{BERN}}$$

NRCFT at large-Q

Conclusion ○●○

b UNIVERSITÄT

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Results

What I haven't told you:

- Some of the *b*'s contain log *Q*-terms.
- Computation of the Casimir energy.
- Miraculous connection with experiments!

NRCFT at large-Q

Conclusion ○○●

b UNIVERSITÄT

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Outlook

- Include spin [Kravec, Pal '19]
- Gravity dual [Son '08] [Balasubramanian, McGreevy '08]
- BCS-BEC crossover
- Non-Abelian Sp(N) at large-N

[Veillette, Sheehy, Radzihovsky '06] [Sachdev, Nikolic '06]