Five-Dimensional Path Integrals for Six-Dimensional (S)CFTs

Based on N. Lambert, A. Lipstein, R. Mouland & P. Richmond [2109.04829]

Rishi Mouland (DAMTP, Cambridge), Strings, Fields and Holograms, Ascona, 14th October 2021

An outline

A problem: \bullet

gauge theories

A proposal:

Rishi Mouland, Cambridge 1/11

No conventional Lagrangian for non-Abelian 6d SCFTs

Some models: Construction of some interesting 5d supersymmetric non-Lorentzian

How these models realise 6d physics, and other aspects

Six-dimensional SCFTs

- Aim: compute dynamical observables in non-Abelian six-dimensional superconformal field theories, which can have $\mathcal{N} = (2,0)$ or $\mathcal{N} = (1,0)$ SUSY
- The A_{N-1} (2,0) theory describes N coincident M5-branes in M-theory • Study using duality with M-theory on AdS₇ \times S⁴?

 - Large N? SUGRA does the trick \checkmark
 - Finite N corrections? Need M-theory corrections in the bulk X
- Many fruitful modern exact SCFT techniques (e.g. SUSY localisation) require a Lagrangian description
- Problem: There is no (conventional) Lagrangian description for 6d SCFTs • Wrap on a circle of radius $R \longrightarrow 5d$ MSYM with coupling $g^2 = 4\pi^2 R$

Some 5d gauge theories

Some 5d gauge theories

A conformal compactification

• Take coordinates (x^+, x^-, x^i) , $i = 1, \dots, 4$, with $x^+ \in (-\pi, \pi)$. Then, the metric

$$ds^2 = -2dx^+ \left(dx\right)$$

is conformal to the 6d Minkowski metric. So let's put our 6d CFT on it

- Translations along x^+ Includes inhomogeneous Conformal algebra broken as $\mathfrak{so}(2,6) \rightarrow \mathfrak{u}(1) \oplus \mathfrak{su}(1,3)$ scaling $x^- \rightarrow \lambda^2 x^ \rightarrow$ 24 real Q's $x^i \rightarrow \lambda x^i$
- Let's also reduce into modes along the x^+ interval • SUSY broken as: $\mathcal{N} = (2,0)$: 32 real Q's
- $\mathcal{N} = (1,0): 16 \text{ real } Q's \longrightarrow 12 \text{ real } Q's$

A problem

$$-\frac{1}{2}\Omega_{ij}x^i dx^j + dx^i dx^i$$

Constant, antiself-dual $\Omega_{ii}\Omega_{ik} = -\delta_{ik}$

Some 5d gauge theories

An action for the modes The basics

- We can now propose a Lagrangian describing the dynamics of these KK modes
- Focus on the $\mathcal{N} = (2,0)$ theories. The

$$\mathscr{L} = \frac{k}{4\pi^2} \operatorname{tr} \left(\frac{1}{2} F_{-i} F_{-i} - \frac{1}{2} \hat{D}_i X^I \hat{D}_i X^I + \frac{1}{2} G_{ij} \mathscr{F}_{ij} - \frac{i}{2} \bar{\Psi} \Gamma_+ D_- \Psi + \frac{i}{2} \bar{\Psi} \Gamma_i \hat{D}_i \Psi - \frac{1}{2} \bar{\Psi} \Gamma_+ \Gamma^I [X^I, \Psi] \right)$$

Coupling $g^2 = 4\pi^2/k$

- Scalars X^{I} , I = 1, ..., 5, gauge field (A_{-}, A_{i}) with field strength (F_{-i}, F_{ij}) , real 32component spinor Ψ , self-dual spatial 2-form G_{ii}
- Ω -deformed objects: $\hat{D}_i = D_i \frac{1}{2}\Omega_{ij}x^j$
- Localises onto Ω -deformed anti-instanton moduli space: $\mathcal{F} = \star \mathcal{F}$

A problem

n,
$$S = \int dx^{-} d^{4}x \mathscr{L}$$
,

$$D_{-}, \quad \mathcal{F}_{ij} = F_{ij} - \frac{1}{2}\Omega_{ik}x^{k}F_{-j} + \frac{1}{2}\Omega_{jk}x^{k}F_{-i}$$

Some 5d gauge theories

An action for the modes **Some classical properties**

- Has exactly the right symmetries to describe x^+ zero modes of 6d (2,0) theory
 - SU(1,3) spacetime symmetry [N. Lambert, A. Lipstein, RM, P. Richmond, 1912.02638]
 - 24 supercharges and SO(5) R-symmetry
- Derived holographically [N. Lambert, A. Lipstein & P. Richmond, 1904.07547]
 - View AdS₇ as a Hopf fibration over non-compact \mathbb{CP}^3
 - Place M5's at fixed \mathbb{CP}^3 radius, reduce along fibre
 - Take M5's to boundary, get fixed point action [N. Lambert, RM, 1911.11504]
- Generalisation to (1,0) known, with generic matter content [N. Lambert, T. Orchard, 2011.06968]

A problem

Classical symmetry breaking

- Specialise to $G = SU(N_c)$, and pick a number of isolated points $\{x_a\}, a = 1, ..., N$
- Extend configuration space: allow for generic principal $SU(N_c)$ bundles over $\mathbb{R}^5 \setminus \{x_a\}$, field strength generically singular at the x_a
- Bundles classified by integers $\{n_{a}\}$ suc
- Solutions to $\mathcal{F} = \star \mathcal{F}$ with $n_a \neq 0$ known [N. Lambert, A. Lipstein, RM, P. Richmond, 2105.02008
- SU(1,3) spacetime symmetry broken, but action non-invariance local to the x_a

 $\delta S =$

ch that
$$n_a = \frac{1}{8\pi^2} \int_{S_a^4} \operatorname{tr}(F \wedge F) \in \mathbb{Z}$$
 around x_a

$$\sum_{a=1}^{N} n_a f(x_a)$$

Some 5d gauge theories

Quantum recovery

- Consider correlators in the quantum the
- The singular points (x_a, n_a) encoded by instanton operators $\mathcal{F}_{n_a}(x_a)$, which are disorder operators fixing the range of path integration
- now with operators charged under the U(1) factor

$$-id \star \left\langle J(x) \prod_{a=1}^{N} \mathscr{I}_{n_{a}}(x_{a}) \Phi^{(a)}(x_{a}) \right\rangle = \star \sum_{a=1}^{N} \delta^{(5)}(x - x_{a}) \left\langle \delta \left(\mathscr{I}_{n_{a}}(x_{a}) \Phi^{(a)}(x_{a}) \right) \prod_{b \neq a} \mathscr{I}_{n_{b}}(x_{b}) \Phi^{(b)}(x_{b}) \right\rangle$$

 General solution for scalars known, and 2-point function entirely fixed [N. Lambert, A. Lipstein, RM, P. Richmond, 2012.00626]

A problem

Theory has no continuous parameters!

eory,
$$\langle \dots \rangle = \int D\phi e^{iS[\phi]}(\dots)$$

• Striking result: in presence of instanton operators, e^{iS} single-valued requires $k \in \frac{1}{2}\mathbb{N}$

Despite classical symmetry breaking, find $U(1) \times SU(1,3)$ Ward-Takahashi identities, Some field like X^{I}

> $U(1) \times SU(1,3)$ bootstrap

Some 5d gauge theories

Building 6d observables

- Crucially, instanton operators $\mathcal{F}_n(x)$ carry charge kn under the U(1) factor
- Takeaway: for $k \in \mathbb{N}$, we can interpret $\mathscr{I}_n(x)\Phi(x)$ as the $(kn)^{\text{th}}$ KK mode of a 6d CFT operator on the x^+ interval
 - \Rightarrow Can interpret the theory as a 6d CFT on an orbifold $\mathbb{R}^{1,5}/\mathbb{Z}_k$. In particular, k=1gives us flat space!
- Mantra: to compute a 6d observable, decompose into Fourier sum of 5d observables, and seek to compute these instead
- Hope to offer window into the computation of dynamical (i.e. non-protected) observables in 6d SCFTs that are inaccessible by symmetries alone

Some other aspects Further symmetry enhancement at strong coupling

- U(1) topological SU(1,3) spacetime
 - SO(2,6) spacetime
- Group-theoretically identical to ABJM at strong coupling (up to real form) U(1) topological SO(2,3) spacetime SO(2,3) spacetime

Clear holographically, as for ABJM \leftrightarrow AdS₄ \times S⁷ it's the transverse S⁷ that's fibred over \mathbb{CP}^3

Some 5d gauge theories

Some other aspects **Recovering the DLCQ description**

- Rescale fields and coordinates by R such that now $x^+ \in (-\pi R, \pi R)$
- Take limit $k, R \rightarrow \infty$ with $R_{+} = R/k$ fixed

 \Rightarrow Minkowski space with compactified null direction $x^+ \sim x^+ + 2\pi R_+$

• Action becomes
$$S = \frac{1}{4\pi^2 R_+} \operatorname{tr} \int dx^- d^4 x \left(\frac{1}{2} F_{-i} F_{-i} - \frac{1}{2} D_i X^I D_i X^I + \frac{1}{2} G_{ij} F_{ij} + (\text{fermions}) \right)$$

Dynamics reduce to SCQM on instanton moduli space $F = - \star F$ [RM, 1911.11504]

 Recover original DLCQ proposal for the M5-brane [Aharony, Berkooz, Kachru, Seiberg, Silverstein, 1997]

Some 5d gauge theories

Conclusion and outlook

- Have seen how five-dimensional non-Lorentzian gauge theories can encode the dynamics of six-dimensional CFTs
- Would be great to better understand how symmetry enhancement at strong coupling works
 - Would we see a restriction to ADE gauge groups here?
- Seek explicit results on 6d SCFTs
 - High degree of supersymmetry \longrightarrow SUSY localisation. New formula for SC index? Compute correlators in different regimes of k

 - Large *N*?
- Symmetry algebra is different real form of $\mathfrak{ogp}(6|4) \oplus \mathfrak{u}(1)$ (ABJM) Integrability techniques applicable?

Let's chat!

Rishi Mouland, Cambridge

Thanks

